
CoCap: Coordinated motion Capture for multi-actor
scenes in outdoor environments

cocapture.github.io

Aditya Rauniyar1, Micah Corah2, and Sebastian Scherer1

Abstract—Motion capture has become increasingly important,
not only in computer animation but also in emerging fields
like the virtual reality, bioinformatics, and humanoid training.
Capturing outdoor environments offers extended horizon scenes
but introduces challenges with occlusions and obstacles. Recent
approaches using multi-drone systems to capture multiple actor
scenes often fail to account for multi-view consistency and
reasoning across cameras in cluttered environments. Coordinated
motion Capture (CoCap), inspired by Conflict-Based Search
(CBS), addresses this issue by coordinating view planning to
ensure multi-view reasoning during conflicts. In scenarios with
high occlusions and obstacles, where the likelihood of inter-
robot collisions increases, CoCap demonstrates performance that
approaches the ideal outcomes of unconstrained planning, out-
performing existing sequential planning methods. Additionally,
CoCap offers a single-robot view search approach for real-time
applications in dense environments.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) equipped with cameras
have garnered considerable attention for their wide range
of applications, including surveillance, search and rescue,
environmental monitoring, mapping, inspection, and 3D re-
construction [1–6].

Motivation: Recently, UAV teams have demonstrated effec-
tive view gathering for 4D pose reconstruction of single actors
in outdoor environments [6]. This is particularly significant
as traditional motion capture, typically confined to indoor
studios, faces space limitations and incurs high costs for
setting up the stage for stunts or other video shoots. Further
research has extended this approach to multi-actor scenarios,
where sequential view planning by a team of cameras ensures
diverse and comprehensive coverage of a group of actors [7].
Moreover, the development of a robust multi-camera aerial
system still requires study.

Challenges: Such motion capture applications in the wild
present various challenges and requirements. First, since multi-
view capture has been shown to improve 4D pose reconstruc-
tion for multiple actors [8–10], this demands a system of
multiple camera-equipped drones capable of capturing diverse
views of moving actors. Second, natural environments are

1A. Rauniyar, and S. Scherer are with the Robotics Institute, School
of Computer Science at Carnegie Mellon University, Pittsburgh, PA, USA
{rauniyar, basti}@cmu.edu

2M. Corah is with the Department of Computer Science at the Colorado
School of Mines, Golden, CO, USA micah.corah@mines.edu

This work is supported by the National Science Foundation under Grant
No. 2024173 and supported by Defense Science and Technology Agency
Singapore contract DST000EC124000205.

Fig. 1: Coordinated View Planning: Coverage optimization
on dynamic actors with flying cameras in an occlusion-aware
and obstacle-clustered environment where camera extrinsic
positions across robots are negotiated.

filled with obstacles and occlusions, especially when cameras
are maneuvered to obtain optimal coverage. This requires the
drone system to not only manage obstacles and occlusions
but also optimize for maximum coverage. Third, in these
operational scenarios, as more camera-equipped drones are
deployed, the system must also coordinate the views to avoid
redundancy and prevent deadlocks in real-time.

CoCap: To address these challenges, we develop an
efficient method for incorporating constraints into the sys-
tem as more drones are deployed. Drawing inspiration from
Conflict-Based Search (CBS) [11], we introduce constraints
to the agents (drones) as conflicts arise. We define conflicts
as instances where two agents enter a collision state, and
we resolve this by applying constraints to one of the agents
while maintaining a constraint tree. Our proposed approach of
Coordinated motion Capture (CoCap) is tested in simulation,
utilizing the reward structure employed by GreedyPerspectives
[7]. Additionally, for real-time applications, we propose a
single-agent view search method that prioritizes actor coverage
and uses a heuristic to explore near-optimal viewpoints. More
details on the simulation setup and reward structure can be
found in our earlier research with GreedyPrespectives [7].

https://cocapture.github.io/

Fig. 2: Sequential (Greedy) View Planning: On the left, there is the sequential view planning of multiple camera positions,
where there are egocentric behaviors across multiple viewpoints as seen in the three camera outputs on the left under greedy
planning. Coordinated planning, on right: we propose a coordinated view planning approach where there is pixel-level
negotiation amongst view positions to allow non-egocentric behaviors as seen in the three camera outputs on the right under
coordinated planning. In general, we refer to behaviors where agents prefer to optimize their own reward to potential detriment
of others as egocentric and behaviors where agents act with respect for mutual constraints non-egocentric.

Contributions: Main contributions are as follows:
• A multi-camera view planning system that promotes di-

verse coverage from multiple viewpoints while coordinat-
ing robots to balance inter-robot conflicts with individual
view rewards.

• Scenarios of multi-actor obstacle clustered environ-
ments that are particularly challenging for multi-camera
equipped drones.

• Heuristic-based single agent view planning framework for
real-time applications.

II. RELATED WORK

Motion capture of actors in natural settings: Recently,
there has been growing interest in developing motion capture
systems using aerial cameras, particularly for outdoor envi-
ronments. AirCapRL [12] introduces a deep reinforcement
learning approach that learns an optimal policy for camera
formations, focusing on achieving ideal viewing angles. How-
ever, this method struggles with reasoning about obstacles
and occlusions in the environment and does not address
scenarios involving multiple actors. Ho et al. [6] tackled the
first limitation by developing a formation planner constrained
to optimal views around an actor using a spherical grid, though
it still does not account for multiple actors. One approach that
addresses the multiple actor scenario is by Hughes et al. [13],
who maximize Pixels-Per-Area (PPA) over multiple actors
represented as polygonal cylinders. The GreedyPerspectives
[7] further improves this method by addressing obstacles
and occlusions. However, although these approaches can han-
dle multiple actors, they are not intended for crowded and
obstacle-dense environments where view rewards and inter-

robot constraints may conflict. CoCap addresses these chal-
lenges by introducing system constraints as conflicts arise and
employing a heuristic-driven view planning method, guided by
rewards from maximizing coverage across multiple actors.

Collision-Free Navigation for Multi-Robot Teams: De-
signing dense multi-robot systems presents significant chal-
lenges, particularly in conflict resolution. One widely used
approach is prioritized planning, where robots are assigned
a fixed priority sequence and planned sequentially based
on their priority ID. This method has been employed in
multi-actor view planning, such as in GreedyPerspectives
[7]. However, prioritized planning can produce suboptimal in
constrained and conflict-rich scenarios, as the preset order
can cause later robots to encounter an increasing number
of constraints, potentially resulting in deadlocks or planning
failures. A more efficient approach to constraint development
is Conflict-Based Search (CBS) [11], where constraints are
dynamically introduced as conflicts arise during the expansion
of a constraint tree. In multi-robot systems, conflicts typically
occur when robots attempt to occupy the same position at
the same timestep. Despite the success of CBS in navigation,
its application in perception planning systems remains under-
explored. CoCap extends the CBS approach to motion capture
in multi-actor scenarios, specifically in outdoor environments
with complex obstacles and occlusions.

III. PROBLEM FORMULATION

We consider a multi-robot system equipped with gimbaled
cameras that aims to monitor dynamic actors in an environ-
ment with obstacles. Each robot moves within a finite graph,
selecting actions based on rewards tied to visual coverage.

Fig. 3: Problem representation of the gimbaled camera (also
formulated as a robot, R) with projection matrix facilitating
coverage on dynamic targets with occlusion and obstacles.

The following notation formalizes the setup, including robots,
actors, and their observed faces, along with the workspace and
reward structure.

Consider a set of robots R = {1, . . . , Nr}, and a set of
actors A = {1, . . . , Na} each with a set of faces Fj =
{1, . . . , Nj,f} where j ∈ A. Also, let all the sets of faces
across all the actors be F = {F1, ...,FNa}. Each of the faces,
Fj : j ∈ Na, are associated with a set of pixel coverage by
agents, Px = {Px111, ...,Pxijk}, where i ∈ Nr, j ∈ Na, and
k ∈ Nj,f . All the robots move in a workspace represented as
a finite graph G = (V, E), and share a global clock that start
at t = 0. Vertex set V represents the set of all the possible
locations of ith robot at time t as vit ∈ V and the edge set
E as actions eit ∈ E of ith robot at time t ∈ {0, . . . , T}
where i ∈ R. The reward for each edge is a M -dimensional
nonnegative vector reward(eit) ∈ R+M \ {0}.

Let ξi(vi1, v
i
l) be a path that connects the vertices vi1

and vil via a sequence of vertices (vi1, v
i
2, ..., v

i
l) ∈ G. Let

gi(ξi(vi1, v
i
l)) denote the M -dimensional reward vector asso-

ciated with the path ξi(vi1, v
i
l) as the sum of all the reward vec-

tors of all the edges present in the path, i.e., gi(ξi(vi1, v
i
l)) =∑

j=1,...,l−1(v
i
j , v

i
j+1), in short, g = J(Ξ).

Let vio, v
i
f ∈ V represent the initial location and destination

of robot i respectively. For simplicity, we denote a path from
vio to vif for robot i as ξi. A joint path for all robots, denoted
as ξ = (ξ1, ξ2, ..., ξNr), is referred to as a solution.

Objective: We employ submodular optimization techniques
to synchronize the actions of a multi-robot team and to study
the associated objective. The observation of each actor j
is quantified in terms of the pixel density (px

m2) obtained
from a linear camera model’s image. We define two func-
tions, cov(xi,t, j, f) → R, returning the pixel density for a
specific actor’s face observed from a robot’s position, and
covp(j, f) → R, returning the cumulative pixel density
from all past observations. This enables us to express the

incremental coverage gain:

covm(xi,t) =
∑
j∈T

∑
f∈Fj

√
cov(xi,t, j, f) + covp(j, f)

−
√
covp(j, f)

(1)

Algorithm 1: Coordinated View Planner
Data: Xinit, T trajectories , envHeightMap,

agentMaxMotion
Result: U†

1 Initialization()
2 TREE← GreedyP lanningWithoutConstraints()
3 Initialize Useq ← {}
4 while TREE not empty do
5 Pk ← (ξk,Ωk,Pxk, gk) // TREE.pop()
6 if no conflict detected in ξk then
7 return Pk

8 end
9 Ω← Split detected conflict

10 forall ωi ∈ Ω do
11 Ωli ← Ωk ∪ {ωi}
12 Pxl ← Px \ {Pxitk}
13 ξi∗ ← LowLevelViewSearch(i,Ωl,Pxl)
14 Px∗

l ← Pxl ∪GetCoverage(ξi∗)
15 ξ∗l ← ξl \ {ξi} ∪ {ξi∗}
16 gl ← GetObjectiveV alue(ξ∗l ,Px

∗
l)

17 Pl ← {ξ∗l ,Ωl,Px∗
l , gl}

18 TREE← Pl

19 end
20 end
21 return Useq

IV. BRIEF OVERVIEW ON CONFLICT-BASED SEARCH

Conflict-Based Search [11] is a two-level search that creates
a binary tree to resolve conflicts in the agent paths on a high
level and runs an optimal low-level search algorithm for a
Multi-Agent Path Finding (MAPF) problem.

Conflict Resolution: Consider a pair of agents, i and j, each
following their respective paths ξi and ξj . To detect conflicts
between these paths, we utilize the function Ψ(ξi, ξj). This
function returns either an empty set if no conflict is present,
or it provides details about the first conflict encountered along
the paths. A conflict occurs at time t when agent i is at position
vit and agent j is at position vjt . This conflict is denoted
by (i, j, vit, v

j
t , t). To prevent such conflicts, a corresponding

constraint is added to the path of either agent i or agent j.
This constraint is represented as ωi = (i, ui

a, u
i
b, t), where ui

a

and ui
b are selected from the set of possible locations V . This

constraint is associated with agent i and ensures that at time t,
agent i follows the specified path, thus avoiding the potential
conflict.

Given a set of constraints Ω, let Ωi ⊆ Ω represent the
subset of all constraints in Ω that belong to agent i (i.e.,

Ω =
⋃

i∈Nr
Ωi). A path ξi is consistent with respect to Ω if

ξi satisfies every constraint in Ωi. A joint path ξ is consistent
with respect to Ω if every individual path ξi ∈ ξ is consistent.

Two level Search: In the high level while creating the
constraint tree with each node containing (ξ,Ω, g(ξ)), each of
them is in a priority queue. Initially, parent node Px0 ∈ TREE
is computed for all the agents such that the constraint set,
Ωo = ϕ, and Po = (ξ0,Ωo, go) gets pushed to TREE. Let, the
total number of nodes created be denoted as NG, and the total
number of nodes expanded as NE : NE ≤ NG.

As each node, k, in the TREE gets explored based on the
least g value, Pk = (ξk,Ωk, gk), Ψ(ξik, ξ

j
k) gets called for all

the sequence pairs (i, j) ∈ Nr : (i ̸= j). If there is no conflict
detected, the solution, ξ, is found and the algorithm terminates.
If there is a conflict detected, (i, j, vit, v

j
t , t), constraints to the

agents are created in the following way. Each condition is
created where constraint is added to either i or j, such that
ωi = (i, ui

a = vit, u
i
b = vjt , t) and ωj = (j, uj

a = vjt , u
j
b =

vit, t). Each of these constraints leads to a new node in the
TREE, where Pli = (ξli ,Ωli , gli), and Plj = (ξlj ,Ωlj , glj),
such that li ∈ NG where new set of constraints is added to
i or j. Here, Ωli = Ωk ∪ ωi, and Ωlj = Ωk ∪ ωj . In each
of these cases, for agent i, the algorithm updates the path ξik
in ξli using the low-level search with a set of constraints Ωli .
A similar call is made for agent j leading to ξjk. If the low-
level search is unable to find a solution for any of these cases,
respective Pln is discarded.

CBS solves a single objective cost function, g, optimally by
iterative expansion of a node in the constraint tree based on
the least g val, resolving first agent-agent conflict (if exists)
and creating a new node in the tree with new Ω, or returning
the solution P = (ξ,Ω, g).

V. COORDINATED VIEW PLANNING

Our proposed planner Alg. 1 also works in a similar
structure to CBS. With the following key differences:

• Greedy planning: Rather than initializing with solutions
to single-agent path-finding problems we initialize with
an approximate solution to the joint multi-agent view
planning problem that relaxes constraints between robots.

• Tree Node (Pk): This node tracks pixel coverage by
agents over actor faces, defined as P = (ξ,Ω,Px, g),
where ξ is the joint robot path, Ω the path constraints,
Px the total observed pixels, and g the node’s reward.

• Cost(g): The cost, g, is the overall reward of the tree
node as denoted by eq. (1).

• Termination criteria: Considering the computational
expense, we return the first set of the solution P without
any conflicts. If there is no valid solution, a failure is
reported.

• Replanning: As a new conflict between any two agents
(i, j) is detected using Ψ, the low level plans for agent i,
with constraint set Ωli and Px \ {Pxijk} : j ∈ Na, and
k ∈ Nj,f . Similarly, for agent “j”.

• Low-level search: Replace A∗ with a reward-guided
solver using value iteration, focusing on coverage over

actors and stable camera motion—key criteria for single-
agent view planning.

A. Constraint Tree Formation

Initialization: During this state, with (Ωo = ϕ,Pxo = ϕ),
as we plan for a series of agents, i ∈ R, we plan each agent
greedily towards maximizing its reward using the single-agent
view planner to produce the set of trajectories ξo. The root
node, Po = {ξo,Ωo,Pxo, go} gets added to TREE. As each
agent, j, gets planned, the pixel context as passed such that
Pxj = {Pxjkl} : j < i, k ∈ T , l ∈ Nk,f .

Finding a solution: The constraint tree, TREE, is pro-
cessed by removing its root node, represented as Pk =
{ξk,Ωk,Pxk, gk}. The removed node is then analyzed using
Ψ, which checks for conflicts between all pairs of agents (i, j)
where i, j ∈ Nr and i ̸= j. If no conflicts are detected,
the current node represents a solution, and the high-level
search with the TREE terminates. While multiple conflict-
free solutions may exist that maximize g, the focus is on
identifying the first solution for computational efficiency. The
tree expansion is guided by the objective function, g = J(Ξ).

Resolving conflicts: If there exists a conflict between any
two agents, (i, j) : i ̸= j, then agent i is re-planned with
constraint set Ωli = Ωk ∪ Sja

t and Px \ {Pxitk} : t ∈ T ,
and k ∈ Nt,f , and agent j is re-planned with constraint set
Ωlj = Ωk ∪ Sia

t and Px \ {Pxjtk} : t ∈ Na, and k ∈ Nt,f .
The output trajectory of each agent i from the low-level solver
is updated to (ξili), and pixel coverage set to Pxli , such that
Pli = (ξli ,Ωli ,Pxli , gli), where gli is calculated with the
updated set of Ωli and Pxli . Similarly, for agent “j”, new
constraints and pixel-set leads to Plj = (ξlj ,Ωlj ,Pxlj , glj).
Pli , and Plj are added to the TREE with their corresponding
g, and the tree is rearranged such that the root node has max(g=
J(Ξ)).

B. Single-Agent View Planner

The proposed single-agent view search draws from the
A∗ path planning algorithm, using a perceptual metric as a
heuristic to guide node exploration, as shown in Algorithm
2. The algorithm begins at the camera-equipped UAV’s start
position, adding to TREE all nodes with valid actions within
the action space. Each node’s reward is adjusted by a discount
factor to balance short-term and long-term rewards. A new
Pk+1 is created, and if it’s either absent from TREE or has
a higher reward than an existing node, it’s added to TREE.
Finally, the trajectory is computed by backtracking from the
end position.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
multi-UAV camera system designed for dynamic actors. The
simulations were conducted using a custom-built simulation
environment to test the system under bottleneck and corrridor
scenarios as shown in Fig. 4.

Algorithm 2: Single-Agent View Search

Data: ξi0, T trajectories, envHeightMap(H),
agentMaxMotion(mi), Pxi, Ωi

Result: ξi
1 Initialize ξi ← {}
2 TREE← {R0, ξ

i
0, e

i
0, t}

3 while TREE.top().t is not T do
4 Qk ← (Rk, ξ

i
k, e

i
k−1, k) ▷ *[r]TREE.pop()

updateProcessedStates[ξik] = true
5 updateStatesFromPrevAction(Qk)
6 eik1

, ..., eikST
←

availableActions(ξik, k,Ωi, H,mi)
7 forall eik1

, ..., eikST
do

8 Rk+1 ← (Rk+1 +Rk)γ
k−1

9 ▷ *[r]Cumulative reward × discount factor
(< 1) for encouraging higher reward states in
fewer timesteps
Qk+1 ← {(Rk+1, ξ

i
k+1, e

i
kn
, k + 1)}

10 if processedStates[ξik+1] ==

true orRk+1 < TREE[ξik+1].R then
11 continue
12 end
13 TREE← Qk+1

14 end
15 end
16 ξi ← BackTracking(processedStates)
17 return ξi

(a) Corridor (b) Bottleneck

Fig. 4: Scenarios requiring high camera coordination due to
conflicting trajectories. (a) Corridor scenario with two actors
navigating narrow passageways. (b) Bottleneck scenario with
four actors moving through a confined region with intersecting
paths.

A. Ego-Centric Test

In this test, we evaluated scenarios where the agents exhib-
ited non-egocentric behavior, such as one robot getting out of
the way to allow another robot to pass as shown in Figure 2.
The objective was to assess the system’s ability to handle
interactions and coordination among agents. We also evaluate
the constraints developed in the system when comparing the
no-inter-robot constraints, while adding inter-robot constraints,

(a) Reward comparison amongst different methods in corridor
environment.

(b) Reward comparison amongst different methods in bottleneck
environment.

Fig. 5: Scale rewards using multiple cameras performing
view planning using No inter-robot Constraint, Sequential
Constraint, and Conflict Based MDP Value Iteration, over total
planning horizon for the environment.

and while doing a conflict-based constraint assignment.
Figure 5a presents the scaled rewards of three view planning

methods in a corridor environment with 8 timesteps, 2 robots,
and 2 actors. The robots are randomly initialized outside
the corridor while the actors move through it in the same
direction. From timesteps 3 to 8, when the robots are inside
the corridor, a clear gap emerges between the performance of
the proposed sequential planning and planning without system
constraints. The proposed Alg. 1 aims to narrow this gap,
bringing performance closer to the unconstrained system.

Method Total Reward (scaled) Compute Time (s)

Corridor Bottleneck Corridor Bottleneck

Sequential (MDP) 4127 5053 482 –
CoCap (MDP) 4662 5162 3981 –
CoCap (Search) 3922 – 2.7 –

TABLE I: Comparison of Total Reward and Compute Time
across different methods for corridor and bottleneck scenarios.
Missing compute time results for bottleneck are denoted as “–
”.

Similarly, Figure 5b compares the three methods in a
bottleneck environment over 11 timesteps with 4 robots and
4 actors, where actors from different corridors merge in the
bottleneck area. From timesteps 3 to 9, the gap between the
sequential planning view reward and planning without inter-
robot constraints highlights the system’s reward decrease as
constraints are introduced. This indicates the need for an
intelligent approach to adding constraints without significantly
reducing the view reward. The proposed coordinated capture
effectively bridges this gap, achieving performance compara-
ble to the unconstrained method but with added inter-robot
constraints.

Together, these two scenarios in Figure 5, with high ob-
stacles and occlusions, demonstrate the proposed methods’
effectiveness in maintaining high-view rewards despite added
constraints.

B. Single-Agent Value Iteration vs. Search

For offline planning approaches, the value iteration solver
can compute sub-optimal view positions to achieve high view
rewards as shown in GreedyPerspectives [7]. However, in more
online settings, there is a need for more efficient algorithms.
The proposed single-agent view search, described in Alg. 2,
aims to address these use cases.

The Table I compares the total reward (scaled) and compute
time (in seconds) for different view planning methods in a cor-
ridor environment. The Sequential method with Value Iteration
achieved a total reward of 4127 and a compute time of 482
seconds. The Coordinated method with Value Iteration yielded
the highest total reward of 4662 but required significantly more
compute time, at 3981 seconds. In contrast, the Coordinated
method with View Search had a lower total reward of 3922
but was the fastest, with a compute time of only 2.7 seconds.
This highlights a trade-off between achieving higher rewards
and compute efficiency, showcasing the effectiveness of using
single-agent view search in online settings.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this research tackles the challenge of coordi-
nated motion capture of multiple actors in complex, obstacle-
dense environments using camera-equipped UAVs. We intro-
duced a novel multi-robot coordinated view planning system,
inspired by Conflict-Based Search (CBS) with an occlusion-
aware objective. Evaluations in two scenarios demonstrate that

our approach, CoCap, outperforms sequential planning, espe-
cially in narrow and obstacle-dense environments. Coordinated
view planning closely matches the performance of a system
without collision constraints, while outperforming sequential
greedy planning. Additionally, our single-agent view search
method provides a significant computational advantage over
the single-agent value iteration solver currently being used.

While promising, the system has limitations. It relies on
a 2.5D height map, limiting its handling of overhangs and
coverage at doors and windows. Actors are oversimplified as
cuboids, and real multi-UAV deployment hasn’t been tested,
potentially facing communication issues with the centralized
planner. More testing is needed in denser, occluded environ-
ments, and the search heuristic lacks exploration strategies,
especially when high rewards emerge later. Ensuring commu-
nication reliability is also crucial for real-world deployment.

ACKNOWLEDGMENT

We would also like to thank Krishna Suresh, Yuechuan Hou,
and Micah Nye for their assistance in developing parts of the
work. Micah Corah primarily participated in this work while
a Postdoctoral Fellow at CMU.

REFERENCES

[1] J. Gu, T. Su, Q. Wang, X. Du, and M. Guizani, “Multiple
moving targets surveillance based on a cooperative network for
multi-uav,” IEEE Communications Magazine, vol. 56, no. 4, pp.
82–89, 2018.

[2] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “Lsar: Multi-
uav collaboration for search and rescue missions,” IEEE Access,
vol. 7, pp. 55 817–55 832, 2019.

[3] S. McCammon, G. Marcon dos Santos, M. Frantz, T. P. Welch,
G. Best, R. K. Shearman, J. D. Nash, J. A. Barth, J. A. Adams,
and G. A. Hollinger, “Ocean front detection and tracking using
a team of heterogeneous marine vehicles,” Journal of Field
Robotics, vol. 38, no. 6, pp. 854–881, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22014

[4] X. Tong, X. Liu, P. Chen, S. Liu, K. Luan, L. Li, S. Liu,
X. Liu, H. Xie, Y. Jin, and Z. Hong, “Integration of uav-based
photogrammetry and terrestrial laser scanning for the three-
dimensional mapping and monitoring of open-pit mine areas,”
Remote Sensing, vol. 7, no. 6, pp. 6635–6662, 2015. [Online].
Available: https://www.mdpi.com/2072-4292/7/6/6635

[5] Y. Kompis, L. Bartolomei, R. Mascaro, L. Teixeira, and M. Chli,
“Informed sampling exploration path planner for 3d reconstruc-
tion of large scenes,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 7893–7900, 2021.

[6] C. Ho, A. Jong, H. Freeman, R. Rao, R. Bonatti, and S. Scherer,
“3d human reconstruction in the wild with collaborative aerial
cameras,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2021, pp. 5263–5269.
[Online]. Available: https://arxiv.org/pdf/2108.03936

[7] K. Suresh, A. Rauniyar, M. Corah, and S. Scherer, “Greedy per-
spectives: Multi-drone view planning for collaborative percep-
tion in cluttered environments,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Oct. 2024.

[8] J. Liang and M. C. Lin, “Shape-aware human pose and shape
reconstruction using multi-view images,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019,
pp. 4352–4362.

[9] J. Dong, W. Jiang, Q. Huang, H. Bao, and X. Zhou, “Fast and
robust multi-person 3d pose estimation from multiple views,” in

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22014
https://www.mdpi.com/2072-4292/7/6/6635
https://arxiv.org/pdf/2108.03936

Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 7792–7801.

[10] C. Zheng, W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, N. Ke-
htarnavaz, and M. Shah, “Deep learning-based human pose
estimation: A survey,” ACM Computing Surveys, vol. 56, no. 1,
pp. 1–37, 2023.

[11] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,
“Conflict-based search for optimal multi-agent pathfinding,”
Artificial Intelligence, vol. 219, pp. 40–66, 2015.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0004370214001386

[12] R. Tallamraju, N. Saini, E. Bonetto, M. Pabst, Y. T. Liu,
M. Black, and A. Ahmad, “Aircaprl: Autonomous aerial hu-
man motion capture using deep reinforcement learning,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6678–
6685, October 2020, also accepted and presented in the 2020
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

[13] S. Hughes, R. Martin, M. Corah, and S. Scherer, “Multi-
robot planning for filming groups of moving actors leveraging
submodularity and pixel density,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), Milan, Italy, Dec.
2024, to appear.

https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386

	Introduction
	Related Work
	Problem Formulation
	Brief Overview on Conflict-Based Search
	Coordinated View Planning
	Constraint Tree Formation
	Single-Agent View Planner

	Experimental Results
	Ego-Centric Test
	Single-Agent Value Iteration vs. Search

	Conclusion and Future Work

